Symmetric Key
Cryptography

" J
Agenda

m Cryptography (crypto)— study of how to

mathematically encode & decode messages
m Cryptographic primitive (low-level) = algorithm

m Applied Cryptography — how to use cry

achieve security goals (e.g. confidential

m Primitives build up higher-level protoco
digital signature — only constructible by

s (e.gQ.
signer)

m Symmetric Encryption: Alice, Bob use same key

12.1. Introduction to
Cryptography

m Goal: Confidentiality
Alice Bob

m ” “My account number is 485853 'ﬁ .
and my PIN is 4984” %\ />
= N

m Message “sent in clear”: Eve can overhear

m Encryption unintelligible to Eve; only Bob can
decipher with his secret key (shared w/ Alice)

" J
12.1.1. Substitution Ciphers

m Plaintext: meet me at central park
m Ciphertext: phhw ph dw fhgwudo sdun

m Plain: abcdefghijklmnopgrstuvwxyz
m Cipher: defghijklmnopgrstuvwxyzabc

m Key is 3, i.e. shift letter right by 3
m Easy to break due to frequency of letters

m Good encryption algorithm produces output that
looks random: equal probability any bitis O or 1

" J
12.1.2. Notation & Terminology

m = message (plaintext), ¢ = ciphertext
~ = encryption function _

-1 = decryption function } Cipher
K = key (secret number)

c = F(m,k) = F, (m) = encrypted message
m m = F!(ck) = F!,(c) = decrypted message
m Symmetric cipher: F1(F(m,k), k) = m, same key

" S
Symmetric Encryption

m Alice encrypts a message with the same key
that Bob uses to decrypt.

Alice Bob

1. Construct m

2. Compute c= F(m, k)

3. Send cto Bob > 4. Receive cfrom Alice
5. Compute d=F(c k)
6. m=c

m Eve can see c, but cannot compute m because k
IS only known to Alice and Bob

" J
12.1.3. Block Ciphers

m Blocks of bits (e.g. 256) encrypted at a time

m Examples of several algorithms:
Data Encryption Standard (DES)

Triple DES
Advanced Encryption Standard (AES) or Rijndael

m Internal Data Encryption Algorithm (IDEA),
Blowfish, Skipjack, many more... (c.f. Schneier)

" S
12.1.3. DES

m Adopted in 1977 by NIST

m Input: 64-bit plaintext, 56-bit key (64 w/ parity)
m Parity Bits: redundancy to detect corrupted keys
m Output: 64-bit ciphertext

m Susceptible to Brute-Force (try all 2°¢ keys)
1998: machine Deep Crack breaks it in 56 hours
Subsequently been able to break even faster
Key size should be at least 128 bits to be safe

" S
12.1.3. Triple DES

m Do DES thrice w/ 3 different keys (slower)
m c = F(F(F(m ,k,),k,),k3) where F = DES
Why decrypt with k,?
Backwards compatible w/ DES, easy upgrade
m Keying Options: Key Size (w/ Parity)

K1 F K, Ky 168-bit (192-bit)
K1 = Kg # K, 112-bit (128-bit)
K1 = Ky = Ky 56-bit (64-bit) (DES)

" J
12.1.3. AES (Rijndael)

m Invented by 2 Belgian cryptographers

m Selected by NIST from 15 competitors after
three years of conferences vetting proposals

m Selection Criteria:
Security, Cost (Speed/Memory)
Implementation Considerations (Hardware/Software)

m Key size & Block size: 128, 192, or 256 bits
(much larger than DES)

m Rely on algorithmic properties for security, not
obscurity

" J
12.1.4. Security by Obscurity:

Recap

m Design of DES, Triple DES algorithms public
Security not dependent on secrecy of implementation
But rather on secrecy of key

m Benefits of Keys:
Easy to replace if compromised
Increasing size by one bit, doubles attacker’s work

m If invent own algorithm, make it public! Rely on
algorithmic properties (math), not obscurity.

" A
12.1.5. Electronic Code Book

m Encrypting more data: ECB encrypt blocks of
data in a large document

Py P, P,
Cy G, Cn

m Leaks info about structure of document (e.g.
repeated plaintext blocks)

12.1.5. Review of XOR

m Exclusive OR (either X |y X XOR y
X or y but not both)
0 O 0
m Special Properties: 0ol 1 1
XXORy=12
z XOR Yy =X 1 0 1
XXORz=y
1| 1 0

"
12.1.5. Cipher Block Chaining

m CBC: uses XOR, no patterns leaked!
m Each ciphertext block depends on prev block

P,

"
12.1.5. Output Feedback (OFB)

m Makes block cipher into stream cipher
m Like CBC, but do XOR after encryption

K
P, —

C,

"
12.1.6. AES Code Example

m Example Java Class: AESEncrypter

m Command-line utility:
Create AES key

Encrypt & Decrypt with key
AES in CBC mode

m Arguments: <command> <keyfile>

command = createkeylencrypt|decrypt
Input/output from stdin and stdout

" J
12.1.6. Using AESENcrypter

m Alice generates a key and encrypts a message:

$ java AESEncrypter createkey mykey
S echo "Meet Me At Central Park" |
jJjava AESEncrypter encrypt mykey > ciphertext

m She gives Bob mykey over secure channel, then
can send ciphertext over insecure channel

m Bob can decrypt Alice’s message with mykevy:

$ java com.learnsecurity.AESEncrypter decrypt mykey < ciphertext
Meet Me At Central Park

" A
12.1.6. AESENncrytper:
Members & Constructor

/* Import Java Security & Crypto packages, I/0 library */

public class AESEncrypter {
public static final int IV SIZE = 16; // 128 bits
public static final int KEY SIZE = 16; // 128 bits
public static final int BUFFER SIZE = 1024; // 1KB
Cipher cipher; /* Does encryption and decryption */
SecretKey secretKey;
AlgorithmParameterSpec ivSpec; /* Initial Value - IV */
byte[] buf = new byte[BUFFER SIZE];
byte[] ivBytes = new byte [IV_SIZE]; /* inits ivSpec */

public AESEncrypter (SecretKey key) throws Exception {
cipher = Cipher.getInstance ("AES/CBC/PKCS5Padding") ;
/* Use AES, pad input to 128-bit multiple */
secretKey = key;

// ... Methods Follow

12.1.6. AESEncrypter: encrypt()

public void encrypt (InputStream in,
OutputStream out) throws Exception {
ivBytes = createRandBytes (IV_SIZE); // create IV & write to output
out.write (ivBytes);
ivSpec = new IvParameterSpec (ivBytes);
cipher.init (Cipher.ENCRYPT MODE, secretKey, ivSpec);
// cipher initialized to encrypt, given secret key, IV

// Bytes written to cipherOut will be encrypted
CipherOutputStream cipherOut = new CipherOutputStream(out, cipher);

// Read in the plaintext bytes and write to cipherOut to encrypt

int numRead = 0;

while ((numRead = in.read(buf)) >= 0) // read plaintext
cipherOut.write (buf, 0, numRead); // write ciphertext

cipherOut.close(); // padded to 128-bit multiple

" J
12.1.6. AESEncryptor: decrypt()

public void decrypt (InputStream in,
OutputStream out) throws Exception {
// read IV first
System.in.read (ivBytes);
ivSpec = new IvParameterSpec (ivBytes);

cipher.init (Cipher.DECRYPT MODE, secretKey, 1ivSpec);
// cipher initialized to decrypt, given secret key, IV

// Bytes read from in will be decrypted
CipherInputStream cipherIn = new CipherInputStream(in, cipher);

// Read in the decrypted bytes and write the plaintext to out

int numRead = 0;

while ((numRead = cipherIn.read(buf)) >= 0) // read ciphertext
out.write(buf, 0, numRead); // write plaintext

out.close();

12.1.6. AESEncryptor: main()

public static void main (String[] args) throws Exception {
if (args.length != 2) usage(); // improper usage, print error
String operation = args[0]; // createkey|encrypt|decrypt
String keyFile = args[l]; // name of key file
if (operation.equals("createkey")) {
FileOutputStream fos = new FileOutputStream(keyFile);
KeyGenerator kg = KeyGenerator.getlInstance ("AES");
kg.init (KEY SIZE*8); // key size in bits
SecretKey skey = kg.generateKey () ;
fos.write (skey.getEncoded()); // write key
fos.close();
} else {
byte[] keyBytes = new byte[KEY SIZE];
FileInputStream fis = new FilelInputStream(keyFile);
fis.read(keyBytes); // read key
SecretKeySpec keySpec = new SecretKeySpec (keyBytes, "AES");
AESEncrypter aes = new AESEncrypter (keySpec); // init w/ key

if (operation.equals ("encrypt")) {
aes.encrypt(System.in, System.out); // Encrypt
} else if (operation.equals ("decrypt")) {

aes.decrypt(System.in, System.out); // Decrypt
} else usage(); // improper usage, print error

12.1.6. AESEncryptor: Helpers

/* Generate numBytes of random bytes to use as IV */
public static byte[] createRandBytes (int numBytes)
throws NoSuchAlgorithmException {
byte[] bytesBuffer = new byte[numBytes];
SecureRandom sr = SecureRandom.getInstance ("SHA1PRNG") ;
sr.nextBytes (bytesBuffer) ;
return bytesBuffer;

/* Display error message when AESEncryptor improperly used */
public static void usage () {
System.err.println("java com.learnsecurity.AESEncrypter " +

"createkey|encrypt|decrypt <keyfile>");
System.exit (-1);

"
12.1.6. AESEncryptor Recap

m Java class KeyGenerator can be used to
construct strong, cryptographically random keys

m AESEncrypter: NO integrity protection

Encrypted file could be modified
So in practice, should tag on a MAC
Use different keys for MAC and encryption

m Key Distribution is a challenge (c.f. Ch. 13-14)

" J
12.2. Stream Ciphers

m Much faster than block ciphers
m Encrypts one byte of plaintext at a time

m Keystream: infinite sequence (never reused) of
random bits used as key

m Approximates theoretical scheme: one-time pad,
trying to make it practical with finite keys

" A
12.2.1 One-Time Pad

m Key as long as plaintext, random stream of bits
Ciphertext = Key XOR Plaintext
Only use key once!

m Impractical having key the same size as
plaintext (too long, incurs too much overhead)

m Theoretical Significance: “perfect secrecy”
(Shannon) if key is random.
Under brute-force, every decryption equally likely

Ciphertext yields no info about plaintext (attacker’s a
priori belief state about plaintext is unchanged)

12.2.2.

RCA4

m Most popular stream cipher: 10x faster than DES

m Fixed-size key “seed” to generate infinite stream

m State Table S that changes to create stream

m EX 256-

nit key used to seed table (fill it)

(1 + 1) mod 256

(7 + S[1]) mod 256
p (S[1],S[J])
(S[1]+S[J]) mod 256
S[t]

SW

Q

~

" S
12.2.2. ... and other ciphers...

MY CRYPTDSYSTEM 1S LIKE

ANY FEISTEL CPHER, EXCEPT <

INTHE S-BOXES WE SimPLY PECRYETION
TAKE THE BITSTRING DpwN, 01101010
FLIP IT, AND REVERSE IT. ooﬁgroa

\ 11001010
&%
Ol0i10011I
W\T\T I —T T ‘,"—T—"’/

r\n"'\"'\ﬁﬂ /N 'ava'ala
APAAANTERANANDNIDLN
I'VE BEEN BARRED FROM SPEAKING AT ANY MATOR
CRYPTOGRAPHY CONFERENCES EVER SINCE IT BECAME
CLEAR THAT ALL MY ALGORITHMS WERE TUST
THINLY DISGOISED MissY ELLSTT SONGS.

Source:
http://xkcd.com/153/

" I
12.2.2. RC4 Pitfalls

m Never use the same key more than once!

m Clients & servers should use different RC4 keys!
C->S:P XORk [Eve captures P XOR K]
S->C:QXORK [Eve captures Q XOR K]

Eve: (P XOR k) XOR (Q XOR k) =P XOR Q!
If Eve knows either P or Q, can figure out the other

m Ex: Simple Mail Transfer Protocol (SMTP)
First string client sends server iIs HELO
Then Eve could decipher first few bytes of response

I
12.2.2. More RC4 Pitfalls

m |nitial bytes of key stream are “weak”

Ex: WEP protocol in 802.11 wireless standard is
broken because of this

Discard first 256-512 bytes of stream

m Active Eavesdropper
Could flip bit without detection

Can solve by including MAC to protect integrity of
ciphertext

